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Lamina r Flame with a
Parallel End Wall

G. F. Carrier , F. E. Fendell, W.B. Bush,
and P. S. Feldman

I RW Defense and Space Sy~i (ems Group
Redondo Beach . CA

ONE NEAR-TERM RESPONSE to current constraints of and fate of unburned hydrocarbons in rec i procating-
fuel cost, emissions standards , and acceptable piston-type Internal combustion engines [4], to
performance is near-lean-limit operation of con- furnish as much engineering information as pos-
ventional engines. However, the reduced pressure sible for the new designer who faces decisions
and temperature achieved in homogeneous-charge concerning the relative merits of alternative
four-stroke spark-Ignition engines under such engine mod i fications. This paper is one in a
fuel-lean operation may lead to enhanced emission series In which the authors seek to contribute
of partially oxidated , or pyrolyzed but unburned , to this need .
hydrocarbons known to be toxic and/or carcino- The scope of the pertinent Investigation
genic [1).* Proper design of the number , loca- should be broadened in view of recent interest
tion , timing , and energy of spark-ignition in low-heat-transfer zircomlum-oxide-spra,yed

- ~ sources should preclude hulk-gas flame-out as a engine components , and in adiabatic components
source of such emiss ions . However , the quench of glass ceram ic s (suc h as si l i con n i tr ide and
layers formed on cold cylinder surfaces (head silicon carbide), particularl y for lar ger
wall , side wa l l , and piston crown) [2) are engines [5,6]. If durable materials can be
thickened under off-stoichiometric operation [3]; developed , not only are problems associated with
unless the cold unburned-hydrocarbon content of the size and weight and reliability and mainte-
these quench l ayers can be oxidated by mixing nance of the cooling system reduced or even
wi th hot oxygen-rich bulk-gas products before eliminated , but also currently wasted heat can
being exhausted , the lean-operation strategy may
be flawed . What seems required are experimental *Numbers in brackets designate references
and theoretical Investigations of the formation given at the end of the paper.

ANsrRA (’T

acceleration of flame speed near an adiabatic
The unsteady one-dimensiona l interaction wall (pertinent to proposed engines), are

of a planar flame, propagating through a fuel- obtained . The time history of unburned hydro-
lean prem i xture , with a parallel impervious carbon content varies with dimensionless
noncatalytic wall is modeled as a Stefan-type Arrhenius activat ion energy, the order of the
problem incorporating one-step chemistry . reaction chemistry , and the Lewis-Semenov
Quantitative details concerning retardation of number, Both temporally varying pressure, and
fl ame speed near an isothermal wall (rertinent also nonuniform fuel stratification , are
to current cooled engines), and concern i ng di scussed .
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be util ized via engine compounding (if the duced to characterize the ratio of thermal
exhaust port Of the primary engine can survive diffusivity to mass—transfer coefficients.
hotter operating conditions). The thermal diffusivity is taken to be inversel y

Thus , interest centers on interaction of proportional to the square of the density . A
flames propagatin9 through confined fuel-lean universal constant heat capac i ty suffices , and
premixtures with (1) isothermal (cold) walls , thermodiffusion , barodiffusion , radiative trans-
and (2) adiabatic walls. Burning is anticipated fer, and mechanical dissipation of energy are
to be retarded near cold walls and accelerated negligible. Most notably, a direct one-step
near adiabatic walls , but quantitative insight i rreversible exothermic mechanism describes the
relating results to controllabl e parameters is chemical-reaction mechanism , with an Arrhenius
extremely l imited in the existin g literature , form appropriate for the specific rate constant

occurring in the law of mass action [3]. The
it seems premature to undertake the turbu- fact is that the detailed rates and multistep

lent case when results for the laminar case are mechanisms of the actual higher-hydrocarbon/ai~not yet available. Further , formulation for chemical reaction , particularly with hetero-
turbulent reacting flow in an automotive context geneous complications posed by the presence of a
is today highly conjectural [7], and turbulent wall [18), are not known ; once this chemical -
fluctuations may be significantly reduced in the kinetic compromise is accepted as currently
near-wall phenomena of interest. In any case, necessary , the other sim~lifications follow from
interest here is centered on laminar flow , the considerations of a consistent level of
though unsteady and nonisobaric conditions are approximation.
ultimatel y to be included . Accordingly, aside from the role of chemical

Though intermediate orientations can and do reaction , which introduces the compl exity of
arise in practice , it is convenient to confine transcendental nonlinearity into the pertinent
attention to two arrangements [8,9]: one in initial/boundary-value problems , treatment of
which the bulk-gas i sotherms are parallel to the parabolic linea r constant-coefficient equations
containing wall (henceforth termed the end-wall only, familiar from the field of heat conduction ,
geometry) [10-14], and one in which the bulk-gas is required . However , for Arrhenius activation
isotherms are perpendicular to the containing temperature large relative to burned-gas tempera-
wall (henceforth termed the side-wall geometry) ture, the role of chemica l reaction is l imited to
[15,16]. Elsewhere the authors intend to present a spatial domain small relative to the domain in
both theoretical and experimenta l results for the which a chemically frozen balance of convection
side-wall geometry. It appears appropriate to and diffusion is an adequate description [19-21].
confine the present discussions to theoretical Here, this small spatial domain is reduced to a
results for the end-wall geometry only. mathematical interface [22], which is a Dirac-

In genera l , attention is confined to un- delta-function-type sink for reactants, and
steady one-dimensional flow in which a well- source for products and chemical heat release.
developed flame initially is propagating through The interface is then a premixed thin flame ,
a fuel-lean premixture; both the nonconfined analogous to the Burke-Schumann diffusion flame
(isobaric) and confined (nonisobaric) cases are [23] long employed in aerothermochemical flows
01 interest. How the properties of the flame involving unprenixed reactants; however, the
become modified as a wall is approached is the flame without structure in the premixed case, in
central i ssue . Never theless , as a prerequisite , genera l , retains chemical -kinetic parameters
some properties of flame propagation away from (such as the Arrhenius activation energy), while
walls must be established to serve as the start- the thin diffusion flame retains no chemical-
ing (and reference) conditions. The dynamics kinetic parameters. Only in the speci tl case of
i s not central , once it is noted that the pres- an adiabatic flow at Lewis-Semenov number unity
sure is spatially invariant , though not in is the premixed flame without structure i ndepen—
general temporally invariant , for the highly dent of chemical-kinetic parameters [13].
subsonic phenomena of interest. What i s central , Never theless , adoption of a thin flame (at which
in addition to overall conservation of mass , is temperature and mass fractions are continuous ,
conservation of species and of heat; this but their derivatives are discontinuous) is a (
conservation consists of a balance of convection, significant simplification , even for the premixed
diffusion , and chemical reaction, reacting flow, because an overall solution is

A conventional set of self-consistent obtained simply by appropriately joining local
approximations , often alluded to (in toto) as the solutions to heat-conduction-type probl ems at
Shvab-Zeldovich formulation [17), is adopted; interfaces (fl ames). In that the position , as
this formulation has been of great engineering well as the temperature, of the flames mus t be -
value in the analysis of a wide variety of aero- found In the course Of solution , thin-flame
thermochemical phenomena. A mi xture of ideal modeling reduces intractable aerothermochemical
gases of comparable molecular weight is taken to problems to tractable Stefan probl ems [24,25).
be present, such that a universal binary diffu- Not only are the conventional analytic proce-
sion coeff ic ient suff ices , and one (constant, dures for treating Stefan problems ava i lable ,
order-unity) Lewls-Semenov number may be intro- but the authors have introduced novel techniques
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~ for the aerothermocheinical application s of rele- ~~
2 D ’ c o nst. (7)

vance here. Such model i ng may prove useful
in a wider range of premixed reacting flows than
the particular flame/wall interactions of in- In this presentation , the law of mass action ,
terest here. under an Arrhenius specific rate constant,

modified to overcome the so-called cold-boundary
FORMULATION difficulty , is

Consider the unsteady, one-dimensional ,
low-Mach—number flow of a reacting premixture , 

• B’ T~~ ~ ~ r
T V 0

0 exp~~ O*/(T* - ~~~~ (8)
where the chemical reaction is a direct, one-
step, irreversible one between oxidant 0 and
fuel F that generates gaseous product P, namely: where B’* is the (constant) frequency factor;

0* is the (constant) Arrhenius activation
(1) temperature; T~ is the cold-boundary (i.e.,cold-

premixture) temperature; and a characterizes the
where v,~ is the stoichiometric coefficient of pre-exponential thermal dependence of the
species i , i = 0, F, P. In the Shvab-Zeldovich reaction rate. While , in general , there need be

4 
approximation , the appropriate dimensional no association of this dependence and order of
equations of conservation of mass , conserva tion reac tion , for convenience (and within the accu-
of species, conservation of energy , and of racy of previously adopted approximations), here
state, for such a flow , are: it is taken that

(2)
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - 1. (

~
)

~~ 

~

y )  f ~ 
It is also convenient to introduce the

- ~~~~~~~ ~~ • ~j, von Mises transformation (x*,t*) -‘
where the streamfunction iii~ is defined in Eq. 2.
Under this transformation , the species and
energy conservation equations , 3 and 4, become

u It~). -~~~ ((~*ic
;) 

~
). (Q*Ic;) w* (f lc;)  ~~ 

~ 
2Dm ) ~~~~~~~~ ~ 

0 e~pF 0

(5) 2
- Le ~—~~r (~/~~)

Here, t* and x* are the time and Cartesian
~~~~~ ~r ~ospatial coordinates, respectively; u~ is the + (~*/c~) B’ (p IR ) V~ ~o sep ~-.e ’/ (i ’ . i~~~ 

(11)
gas speed and ~ is the streamfunction; p~ and
T~ are the density and temperature; R* is the
gas constant for the mixture , taken to be corn- while the (complementary) mass conservation and
posed of species of comparable molecular weight; mapping equations are given by
p* is the pressure, taken to be a function of
time only, from consideration of the equation of . 1 (1 2a , b)conservation of momentum ; Y.~ is the stoichio- 

.

metrically-adjusted mass fraction of species i;
D* and X~ are the mass-transfer and thermal- To develop a nondimensional formulation , let
conductivity coefficients, respectively, and c*
is the (constant universal ) heat capacity at
constant pressure ; and Q* is the specific heat

- ~ of combustion; wh i le w* is the reaction rate. t . t
~_r ~~

_3_
~~I.) (13) 

—

In what follows , it is taken that the Lewis-
Semenov number is a constant of order unity ,
i.e.,

0
( X 1c)  

. 
V~(ii,’,t )  

~~~~~(~~~~~

t* )
Le ~~~~~ 

. const. ~ 0(1). (6) y - . (14)

Further it is compatible with the accuracy —

2. characteristic of the Shvab-Ze ldovich approxi- T(~ ,t) . 
T~(~~.t~~~- T~ (15) ES

mation to adopt b OIAL
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, ~~~ - , steady adiabatic laminar fl ame propagation for

large t~, it is known [19-21) that (1) the f low
field may be divided into a chemically frozen(16) preheat domain , of scale (D~/u~ ), in which con-
vective diffu sion occurs , and a relatively
thinner reactive domain , of scale ‘(D~/u~), in ~~ .

Here, the subscript u denotes unburned (or cold- which chemica l reaction and diffusion balance;
premixture) conditions ; while , the subscript b (2) that (except for very-near-stoichiometric
denotes burned conditions (in the absence of conditions , i.e., ~ 

.~ 1),hea t losse s, i .e., under adiabatic conditions).
More specifica l ly, u~ is the so-called adiabatic 1 . 4 0 . 1  (23)
flame speed . Also , • 

~~FU’~oU~ 
is the (so- in the reaction zone , the only region in whichcalled) equivalence ratio , which is less than chemical processes play a significant role (sounity ,for cases of interest here, in this V0 YOU 

for all p,t from Eq. 14); and (3) thatdevelopment, it is taken that 
~Fb 

= 0, such that
(if r(z) denotes the (complete) garna function of

~Ob 
= 

~
‘Ou - 

~
‘Fu~ 

= ((1 - 

~)/i 3Y~~, and that ~ [26)}
u V~~4 1

[T~ + (Q*/c )YFU). Further , p~ =p ~ R* 1*. 
(1 4 O(~~1 )) (24 )• ~ (2 r(-~ • 1)~~,

Thus , the nondimensional species and energy equa- for the fuel-lean case. Accordingly, for moretions can be written as complicated phenomena involving combustion in
fuel-lean premixtures characterized by large 8,
it appears convenient and appropriate to reduce
the narrow reaction zone to a mathematical inter-• , 

~~~~~~ 
- •~

p• av a20 ~o • Vç ) - 1 ~ (~ ~~~~ )‘
~ 

~~~~ ~ 1~~1 . (17) face at ~ = v(t), with v (t), the interface- p

loca ti on , a quantity to be found in the course of
solution. For continuity of the dependent varia- 

~
-

a? a2i (~ 0
.

L. • A 
•• ~ (~ ~~~~~ )

V~ 

~~~~ 
~~~ 

bles themsel ves , it is required that

(18) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (25)4 t~~
where

with }T(t), the temperature at the flame , another
C • ~~~~-~~~~~~~~~• 

~~~~~~~~ (C.) ( c ) quantity to be found in the course of solution.(19) The flame is anticipa ted to be a Dirac-delta-
function-type source (26] for chemical heat and
sink for reactants, such that first (and higher)

(20) spatial derivatives of the dependent variables
(aside fran, the pressure) are discontinuous.
Hence , in the vicinity of v(t), the equations for(v vr ) 1  ‘

~~ • . conservation of fuel and energy are wel l
(Li) (21) approximated byA • 

~~~ 
~ t 

, ‘r

+ ~~) - 1 1 i-i k (26)The nondimenslonal state , continuity , and mapping ~~“ 
0 •*P~ ~

equations can be written as
+ 1 

~ ~~~~ k1). a (ii ~~ n\ ~~~~~~~~~~ (22) I.______ ______ e —~ -A p v “0 r ~ (27)

• Hence , in the vicinity of ‘i’(t),Typically, the nondimenslonal activation
• temperature, B, Is much greater than unity (3) ;

this observation Is central to the analysis to 2follow . The quantity A pl ays the role of an ( 04  • 0 ~~~~‘ Le (tht] !!11 .W.iik . aY1* (y) .t~ (28)
elgenvalue in steady flame propagation; again,
It is steady adlabatit flame propagation Into a if the convention is henceforth ado~ted thatquiescent premixture characterized by 

~~ 
T~ 

~~~~~~~~~~~~~~~ ~uffices (o
’
~~tWé~cà1cula-• and • that yields u~, taken as known for tion o t e epe ence of the jump in Y~ on B and

species 0, F react ing to form product P . For ~(t) (using Eq. 26) to take

_ _ _ _  - - 
~~~~ •, .. 

.

... 
.~~ IL
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T(..t ) R(t )  (ii.) 
~~~ 

... . (29)

The discrepancy Is of the order of 1/8 and would wall 
~ 0

flame : Y 0, 1 11(t)
• be eliminated formall y in a derivation using

singular perturbation theory. Accordingly, for i o or o 
/

1,

I ‘~~ >•~ I unburned Uf(t~ burned
/ ~~ 

p 0 ‘r~ ,Il~ 
0
’I I 1.T~ •

‘( t )~~~ 

•

~

. 
. 30) J preriilxture ~Uf(t) ~~

• 1’~y ” O ,H~ T > 0  Y = O
• or, from Eq. 29 6’

~~~~~~ 

• - 

~~~~~~~~~~~~~~~~ 
x ~~ — 

-2
________ 0 ~+ ( t )‘

~
L
~~~~~ 

,
~ D~~~ 

• 
1/ ~~~ •ep~•~ 

(i-H) • 
~~~~~~~~~ 

(31) -

~ H. (v/i.) •
~ 

. . - —

0 n:’=1
where the upper limit has been extended to inf i-1 i nitv by use of Laplace-integral-type (i.e.,
steepest-descent) concepts (261 . Expansion of Fig. 1 Schematic for a thin—fla me , Stefan-t~pethe argument of the exponentiaT gives model of the unsteady one-dimensional isobaric

flow in which a large-activation-energy l arilnar
~ ( (32) flame propagates toward an impervious noncata-

dy. lytic wall , that is either isothermal (cold) or“ p~~ 

• ~~) - I 

~ adiabatic. The purely diffusive-convective
unburned-premixture region is characterized by

_______ 
(v 0
.
~~~
.)i: v ‘1 ~ (33) finite fuel mass fraction V and by temperature IP below-the temporally vary ing thin-flame tempera-

ture 11(t); the purely diffusive -convective burned-
by Eq. 24. gas region possesses no fuel . In the dimension-

These results may be anticipated to hold less Cartesian coordinate x , the flare site is
for vigorous burning only, such that a narrow denoted X f ( t ) ;  in the von Mises (mass-weighted)

• 
~, reaction zone may be adequately approximated by coordi na te, the corresponding variables are ~~‘ ,

equivalent interfacial conditions. Nevertheless , I’; In the Landau (flame-stabilized) coordinate,
the resul ts should be of qual itative use for the corres ponding var iab les are a, 1. The gas
less vigorous burning , in which the reaction speed at the flame Is denoted uq; the flame speed
zone Is diffuse. The interfacial results pre- (in laboratory coordinates) is denoted• sented here by heuristic arugment may be obtained
more formally by application of multiple-scaling
techniques of modern asymptotic analysis;
ac tual l y, Zeldovich and Spalding intuitivel y
used equivalent methodology decades ago (17~. 

The followi ng notation has been introduced for
The resulting Stefan-type problem (24,25] convenience:

may be suninarized as follows for the domain
t >0, j,1 ij I~ ’PR. For v ( t )  ~ < ‘DR’ i.e., (~~~

(* . t
~ 

for

• (38 )downstream of the flame, the species and energy H(~~ ,t~ for , .equations are (Fig. 1)
At the interface , i.e., for ~~

- 

~(t) ( t  ‘ 0),
(34) the boundary conditIons for the dependent varia-

bl es are

(35) 0 . 0 ,  P~.H.H)I ) (39)

while the boundary conditions for the first
while for < ,j, v(t), i.e., upstream of the derivatives of the dependent variabl es are
flame, the species and energy equations are

F(
~

v (40)

(36) with

w (~) (“~ 
I ) ~~ ~~ y • l ( , ui~) (41)L ~~~~~~~~~~~~~~~~~ (37)

_____________________________________________________ -.
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For t 0, the initial conditions are (wi th independently of the chemical-kinetic parameter
- >~ 1, such that the flame is initia fly 8. Because of this signific ant simplification ,

far from the unburned-premixture boundary] this special adiabatic case has been considered
separately for the particular circumstance of a
flame propagating isobarica lly toward an adia-.

- ‘ a. ~~~~~~~~ ~ - •~ . ~~~~~~ • (42 ) batic , noncatalytic wall [13].

In the sense that the reaction order and
Arrhenius activation temperature for a one-step
pseudomechanis m for the chemistry must be enipi-

0 for - rica lly assigned , the exponent on the pressure
* 

~ 1 ( ‘~~~~• .)\ 
‘ (43) factor, the exponent on the pre-exponeptial- 

d~~~~~~
) 

for • 
~0 temperature factor , and the nondimensiona l acti-

vation temperature in the exponential factor,
all in the expression for the mass-fraction
gradient at the flame , are available for assign-( (. -~~~ \ (44) ment [3,27].• 1 . ( I . % )  . - 

~~~ ~~ Lr  C
0 1’ Solution to the Stefan-problem formulation

where b0, c0, d0 are given consts. close to may be sought by direct numerical integration;
this can be a challeng i ng task to accomplish.

unity in value , so the initi al profiles are very Thus , the procedure preferred here is to recast
similar to those occurring in lamina r i sobaric the problem in a form such that the two-indepen-
f lame propagation . The right end-point boundary dent-variable dependence is reduced to dependence
condition is on a single i ndependent variable , time . This

may be ac hi eved by use of the method of weighted
h . l a s ~ ~~~~~~~~~ (45) residuals , or , more simpl y, by use of a straight-

forward integra l method [28]; the result is z~nwhile the left end-point boundary conditions are initial -value problem , consisting of simu l ta-
neous quasi linear ordinary differential equations
in time , with appropriate starting conditions.

H . 0or~~~.0as . •.
~
(t ;0). (46) The adequacy of this approximate procedure

depends upon the ability to anticipate the
V • 1 or - .0 as- . • 0) (47) spatial variation of the dependent variables .

An alternative method to reduction to a one-
independent-variabl e problem is to introduce the

For some cases to be considered below , the boun- integral transform over space, with the inversion
leading to two simu l taneous nonl i near Volterradary and/or initial conditions given here are integral equations [26] for 11(t), ~(t); whilemodified , but explicitness is preferred to gene- this reduction is formally exact for cases ofrality for purposes of presentation. However , interest , convergenc e of the iterative tec hniqueany initial conditions adopted are anticipated required for solution of the integral equationsto be compatible with the boundary conditions to must be achieved .a high degree of accuracy . For brevity , the corn For completeness, it may be remarked thatplenentary relations (Eq. 22) are not repeated the simplification of the Stefan-probl em formu-here, though it is noted that boundary conditions lation is based on the smallness of the reaction-on the velocity at impervious walls are enforced , zone thickness relative to the preheat-zoneof course, in the obtaining of solutions, thickness, for large dimensionless ArrheniusOne special case is deemed worthy of dis- activation temperature. Phenomena in the burned-cussion at this point. For a semi-infinite gas region are taken to occur on the diffusivedomain (e.g., 

~~~~ 
-+ c o) ,  the flow is well approxi- scale of the prehea t zone . Now , in fact , a

mated as Isobaric in many circumstances , such third spatial scale implicit in the adoption of
that p(t) = 1. If, in addition , the flow is the range 

~R 
- 

~L ’ has been introduced ; in theadia~..~.ic wi th Lewis-Semenov number Le = 1, then ,
under the provision that the following statements Cartesian coordinate , reference may be made to
are compatible with the initial and boundary the dimension of the “conta i ner” L*; if the

Peclet number Pe based on adiabatic flame speedconditions of interest, is large, i.e., if Pe L*/(D~/u~) -‘‘ 1 , then
• P.  1 for o- ; t (t). V + H • P • 1 for • (48) even the diffusive-convective preheat and post-

flame domains become narrow relative to scale 1*.
In thi s c i rcums tance , the diffusive terms may beIn this special circumstance , dropped from the Stefan-problem formulation ,
provided the effecc of the flame is appropriately
accounted for in the resulting nondiffusive(49) problem. In such a nondiffusive formulation , the

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  •
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dependent variables themselves (except for the
pressuri) are discontinuous across the parametri- & j  ~~~~ 

& ‘(1 > (55~
• cally-inserted flame . Further details on this --

level of approximation are deferred to later
publications; here, resul ts for the already-
developed Stefan problem, retaining the diffusive (55b )scale, are obtained . £ [~XP~. ej~1~} [J7 {dv . - (v4)d’~

} 
d~ . .

PROBLEMS IN FLAME PROPAGATION

TRANSIENTS - Before problems including d(~ . d )  • .1. (55c)
flame/wall interaction are undertaken , some
unsteady flame propagation problems in the Similarly, Eq. 35 gives
infinite domain -~~~ <~~~< are examined to eluci-
date the formulation , The methods of solution ,
and some properties of the phenomena under study. w - - ~~ {r~~ 

- U_..41. (56)
I.e CHere the integral method is used to study the

effect 0f Lewis-Senenov number on reattainment
of steady flame propagation after a smal l heat and Eq. 37 gives
extraction from, or addition to, the flame . 

+ . 1 .  (57)The isobaric initial/boundary-value problem L e b  
~~~~~~~~~~~~~~~ ~

_

,,

is given by Eqs. 34-44 and Eq. 22, with p 1,
-

~~~~ ~R 4
~ ’ ~ 

0. The boundary conditions If Eq. 54 is enforced in algebraic form at t = 0
(Eqs . 45-47 ) become to determine b0, d0, then the partly differential

set is conveniently rendered a set of coupled
-. 1 ~s . (for t 0); H 0, V • I as ~ — (for ~ o>. (50 ) quasilinear ordinary differential equations by

differentiation of Eq. 54:
In anticipation of an integral method of

sol ution , results are sought in the forms, com-
patible with Eq. 39, T~~~ F + h l ” 0  (58)

I 2)i.Ji~

• 1 - (1-H) expf (~
_ .-?/ Le c~ for -t =. t ~ 0; (51) (

~ 
+ + d ’ - b + —4 ~ • o. (59)

H • ~ exp(- (~ -*)iie b~. (52)

For it0 = IT 1, Eq. 56 is an i dentity , c plays
V • 1 . exp~-(f-~)/d~ for ~ V~ t 0. (53) no role, d = d0 1 from Eq. 54 and/or Eq. 58,

wi th C, b, d, as wel l as it and P, = fncs( t). b d I from Eq. 54 and/or Eq. 58, and
These forms are compatible with the initial ‘V 1 = -1 from Eq. 55c and/or Eq. 57, so that
conditions (Eqs. 42-44) if c c0, b l,~, 

‘V -t, since ‘V~ 0. Thus , as a special case ,
this set can recover steady laminar flame propa-d -

~ d0, and Ti - as t -* 0. Insertion of 
gation (here expressed In a laboratory, as

Eqs. 51-53 in Eqs. 40-41 yields opposed to a flame-fixed , f rame of reference).
Since 11; 1 for appreciable reaction , Eq. 58
gives interesting insight into the relativeE 1’ (54) importance of the reaction order and the non-

At t = 0, for given values of H0 and c0, these dimensional activation temperature B. Incremen- - •

ting B by two has the same effect on the solution
- relations give b0 and d0; for 11(t) = 1, c(t) is , as incrementing V

F 
by unity for 11= 1; since

in general , i rrelevant. ~ Ti~ is close to unity , ~ 0(10), vF = 0(1), typically, an appreciable
- so are b0 and d0. change in 

~F’ 
suc h as an increase from one to two,

The evolution In time of the solutions
(Eqs. 51-53) requires the finding of b (t), c(t), has modest effect on the results .
d(t), 11(t), and V (t). Two algebraic eqquations The following results concerning the effect
are obtained by the substitution of Eqs. 51-53 of Lewis-Semenov number Le and of I4

~J on the rate
in integrals of Eqs. 35-37. For example, if of recovery of laminar propagation speed are
prime denotes ordinary derivative wi th respect obtained by numerical i ntegration of Eqs. 55c,
to time, from Eq. 36 56-59, for c0 = 1, 8 = 10, V

F 
= 1. For Le = 1, 

—

~L. 
--~~~-— . -

~~~~~
—--•--—

~~~
• — - - -

~~

- -
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0.9 (such that -0.25) results in where , again , IT = 11(t) denotes the flame
temperature.0.97 and ~~~

‘ = 0.9 for t = 10, but H0 = 0.5 As t ‘ 0,
(such that ‘V~ -0.005) results in effectively
no recovery at all , even by t 100. Hence , for P Ro 1 . 

~ 
~~. ~~

- • - (63)
too large a perturbation , steady flame propaga-
tion effectively is not recovered , according to

~ 1 - t~~ ;~~ , )  • A S(-~.L) for ~ ~ ( 64a )the model. Also , for Le = 1, H0 0.99 (such 
-

that ~ -0.93) results in ‘~ -0.99 for 0 for 0. (64b)
t 3 , but 

~o = 1.01 (such that ‘~~~~ = -L07)
results in ‘V’ = -1 .01 for t 1.9; hence, 

(.x~ ( /Le ) for 0,
recovery is faster for flame-temperature augmen- . (65 )tation than for flame-temperature depression . for k ~ 0.For iT~ = 0.9, at Le = 0.7 (such that
H = 0.99 at t = 17,5 and q” -0.99 at where S(z) is the Heaviside unit steD function.t ~ 23.5; for ~o 

= 0.9 , at Le = 1.3 (such that The step-type increment (or decrement) to the
= -0.25), fi = 0.99 at t ~ 7.9 and tjt ’ = -0.99 upstream unburned premixture is characterized by

at t 6.5 Thus, for larger Lewis-Semenov a magnitude A at distance L from the initial
number , both the flame temperature and the fl ame flam e site in the streamfunction coordinate ~~ .

speed are recovered sooner. It should be noted The larger L , the more the step function diffuses
that the influence of the Lewis-Semenov number to a smoothed-out transition from V = 1 to
on the adiabatic fl ame speed i tself is implicit “ = (‘ + A) before the flame arrives.
in the nondimensiona lization; the influence of The boundary conditions are
the Lewis-Semenov number on the rate of recovery y (I.A ) , 1 -0 ~ s • -- (for t 0); 0 .  0. 1 • 1 as , • (fo r t 0).

of steady flame propagation after an initial 
~66)temperature perturbation is the matter under

study. Clearly the flame propagates from its initial
site at the origin in the direction of negative

STRATIFI CATI ON - Here , the Fourier integral
transform is used to derive Volterra integra l The Fourier transform pair over the spatial
equations describing the effect of nonuniform coord inate is introduced :
stoichiometry of the premixture on laminar flame
propagation; in particular , the error incurred
by using locally an appropriate steady—laminar— V (s,t) . 

J 

0(~~.t) e ,p (-s~)& i~~~ Y (~~.t)  . 
~~~~ / V;s.t) e~r(s~)ds. (67)flame-propagation formula to obtain the accelera-

ting or decelerating flame speed is sought. Of
course, nonuniform stoichiometry of the fuel/air with the transform parameter s i~ . For brevity,
premixture is of current automotive i nterest only the mass-fraction equation is developed ; the
because of stratified-charge engines , temperature equation is readily seen to be

The initial/boundary-value problem posed by similarly treated , so only the result is stated .
Eqs. 34-47, and Eq. 22, is recast to allow a If tentatively the function F is formally
more general initial condition , and to incorpo- treated as known , and if contributions from the
rate the conditions (Eqs. 40-41) in the partial integrations by parts are ignored (because the
differential equations (35-37). Thus , over the contour of the inversion i ntegral with respect
domain -~~~ < tj i <~~~~, t ~~O, to singularities on the real axis is tc. be so

chosen that the boundary conditions are incor-

~ 
porated), then application of the transform gives

(60)
IV 

- • -r eop(-ss); (68)

57 (61)
c a(,~ 

.

standard introduction of an integrating factor
for this first-order differential equation gives

where ~(z) is the Dirac del ta function , ‘Y(t)
again denotes the position of the flame, and , by
definition , V(s.t) . V(s.0) •ep (t 2

t) - _,f’ r ( t ’ )  eep ~s
2 (t_ t ) - “(t , dO ’ - 

(69)
0

v,o1 
- (62) Further , the taking of the transform of the• R { initial condition gives

— -- -  — - - . -- - 
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71 A‘(5 .0) . - * 
~

—‘
~ 

- ~ ecp(Ls). (70) relations for ii and m; once these two unknown
functions of time are determined , substitution in

Inversion of the contour Integrals [29] gives Eqs. 73 and 75, or then-straightforward nur’erical
integration of Eqs . 60-66, yields the mass-
fraction and temperature profiles at any (~ ,t).

- •rt~c (~~~~~). ~ ~~~~~~~~ er~c (t
h i 2  . Because a convergent iterative procedure

for the treatment of Eqs. 74 and 76 is not an
A , , (, ; ,

~ - 

~
,J ~~~~~~ ,, ~

, [. - .~t ’•fs do (7 1) entirely trivial matter , some discussion is given
2 cr 

~ t 1 
~

- 

~ 
(t.t ’) here, prior to presentation of numerically -

obtained results. First , the integral term in
The physical role of each term is now noted . Eq. 76, denoted 12[t ,m(t);Le,VF,B], and the
Each of the first three terms on the right-hand integral term in Eq. 74, denoted I 1[t,m(t);side of Eq. 71 gives the time evolution of one of
the three terms on the ri ght-hand side of the Le ,V F,B] = I2[t ,m(t);1 ,VF,B] are integrated byinitial condition (Eq. 64a); the firs t term of use of linear interpolation , as now indicated .Eq. 71 is derived from the first term of Eq. 64a, Discrete time intervals of interest are selected :etc. The fourth term on the right-hand side of
Eq. 71 is consumption at the thin flame . t5~ s 

= 1,2 ,3, ... , where t5~1 > t~ and t1 0.
The result of Eq. 71 is given in laboratory Then , for example,

coordinates; it is conven i ent to transform to
flame—fixed coordina tes :

t j*t

( ; . t ) .  • t t ~ • • m ( t ) .  (72) 2)- I..)h17
~~~~ J 

Q [t’.(~ t ), m(t );t .e(t ).L, .1 -) 
(77) -

- 
d tj .

(t 0

Eq. 71 is rewritten : where t~ is a dunvny variable of integration . Here

(
~ 

• - f ( t ~~) — m uerfc (~~~i) - cop ~~
. t..(t)) eric 

~~~~ 
) (73) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ CCV 

~~

_________ ________ ~ _____________+ 

~~

erfc
(~~~~~~~~) 

S _______ ___________ v +1 ~ (i. H(t )) ~ ~ (m(t ~ ) — r t ) J 2
1211/2 - 

~~~~~!( t t )~
/2 ~~~~~ ~~~~~~~~~~~~ ~~~t ;) )  cop - - exp -1 H)t; ) I ~

1
~
t
~
fl s _ t 1-•)

The flame is situated at C. = 0 for all time t.
Enforcement of Eq. 39 gives Q~(t~ .Ft( t 3 ).m(t j) ;t 5.m (t 5 ) .Le.~~ .fJ (78)

0. eric (. !437) - ~ ~e*p(t - m(t) )~ ~erfc (2t t)) (74) ~~~~~~~~~~~~~~~~~~~~~~~ o~(t~ . )  
[ 0 j - t~) • (ti - t~ ))

tj_ , 1 - t
i

dl ’ .erfc (5 e t )  . ~~~~~~~~~ ~~~ 
~ [m(t~ - m(t ’)]~ ~

t’) (t-t ~) over the domain t~ < t, ~ t,~.,.1. Substitution
For A = 0, F = 1, m = t is a solution of this of Eq. 78 in Eq. 77 and integration give
intearal equation; for A ~ 0, iT $ 1, so F $ 1, 12[tS,m(tS) ;Le ,v F,t3] as an al gebraic , as opposed
and H and m must be found . Whereas Eq. 74 gives to integral , express ion. For Le = 1 , Eqs. 74one equation for the two unknowns , the second is and 76 sum to• obtained from consideration of Eqs. 61, 62, 65
and 66. It is found that

A 
______1 + eric

• eric ( - exp 

~ 
t~~n (t)] ,rfc (; . 2t - m~t)\ 

[2 t,
1/2 J (79)

2 (Le 1)1 2 )
~ 2 (L e t)

2(
’
i177f(t.t .~~~

2 exp ~. [ m ~~~~’)f dt ’ . 
(75) Use of Eq. 79 in Eq. 76 , together with the con-

cepts of Eqs. 77 and 78, yields one transcen-
dentally nonlinear algebraic equation for one• Enforcement of Eq. 39 gives , if i t  is recalled un known , m(t5). A first guess may be obtainedthat h(Ij,,t) -+ 11(t) as ~‘ —
by linear extrapolation from m(t 5 1 ) and

H)t) • ~~.rfc ( •1t 
), 

i ,,p
(
~~~~~

)•
~~~

( 2 t m(t 3

~

\
~2(Le t )’ 21L. & ) for early time s , m(t) t furnishes guidance. A

t (76) second guess may be obtained by perturbing the
* 

1 
_ _ _  _ _ _ _

21. ~~~~~~ (t-t’) ~ 
cap ~~- ~~~~~~~~~~~~ dt ’  - first guess by a small amount. Newton’s rule ,

with finite difference approximation of the first
derivative based on the last two iterates fromFor IT = 1 so that F = 1, m = t is a solution of

• this integral equation for all finite values of m (t5), quickly yields effectively invariant suc-
Le. Eqs. 74 and 76 constitute the coupled cesive iterates for m(t 5 ) -- and , by use of Eq. 79,

______ _ _ _ _ _
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~or 11(t5) -- and , hence , quickly achieves con - 1.25
vergence to a solution for t~. Now , let s-” (s+l),
Le., increment time , and repeat the procedure.
For Le ~ 1, an analogue to Eq. 79 is obtained as
follows : multiply Eq. 74 by (LeY’1”2 and , then , 1.2
subtract Eq. 76 from Eq. 74 to produce B

B lO ,VF
= l

1~~ ( m(t ) ) ~i~( t )  . ~erf c ~~~~~I 2 (L r ~~~~~ 
- 

~:&~
-
~ 

.rf~~
___

~~ )~ 
1.15 - B = 10, “F = 2

It - m (t  ) /2 t
5 — m (t )\ H

• 7 / \2(Le~~~
1
~~) 1.1

- 
__J~~ 7 e~p ~ - mIt 0 )) erfc 

2 tS
T77

~~)}
( 2 t

0 -m (0
9 )\

+ 
~

1 2[tS.m(t S~~~~,~ F.f) 
- 

(L~~
T77 I 2[t 5 .m(t,);1 .v~,~]~. (80) 1.05 . •

The (small) difference of the last line of Eq. 80
is evaluated as a number , by use of the best
current estimates for m(t5), 11(t5); the first 1.0 ____________________________________

0 5.0 10.0 15.0 20.0three lines of Eq. 80 are left as written . Then
Eq. 80, for Le ~ 1~ serves the analogous role t
that Eq. 79 serves for Le = 1, i.e., substitution
of Eq. 80 in Eq. 76 gives one nonlinear algebraic
equation for m(t5), to be solved by iteration Fig. 2a - From Volterra -integra l -equation for-

mulation of thin flame propagation through a(using Newton ’s rule to obtain the root) until stratification in stoichiometric ratio of theinvariance of successive i terates for m (t5) unburned premixtur e , the dimensionles s flame
indicates convergence. Use of this result for temperature IT as a function of time t, for values
m(t5) in the first three lines of Eq. 80 yields of the dimension l ess activation temperature ~and stoichiometric coefficient for fuel vF.an updated 11(t5). These values for m(t5), iT(t5) Here, Le = 1, A = 0.2, L = 10. It may be noted
become the most current estimates , and the that 11(0) = 1
entire procedure can be repeated until conver-
gence is obtained .

Results are presented in Figs.2 through
(/24; spatial profiles for V and 1, at fixed time

t, may be more readily obtained from numerical 
~ (j~

—
~-) 

( -
i
-p ex~~~~~~

( 
-
~~)~~

‘> (82a)( 11u2) ‘tFu2’

integration of Eqs. 60-66, with 11(t) and ‘v (t)
known, than from Eqs. 73 and 75. A question
arises concerning how adequate Eqs. 21 and 24
are as a means of obtaining the instantaneous V p

flame speed when the flame is propagating through ~“~2’ 
/0

FU2 ) exP~~~- (1 ~ Lssi~k (82b)
the stratification gradient , such that the effec- ~~~~~~~~~~~~ Fu2F I

tive upwi nd mass fraction varies from unity at
t = 0 to (1 + A) at long time. The follow ing s i nce (82/81) = (V FU1/V Fu2 ). Subscript 1 denotes
calculations indicate that the “quasisteady”
calculation is but about 5% or less in error , the initial condition (for which the upwind
and , thus , fully adequate for most engineering asymptotic value of the mass fraction ‘

~Fu1 
=

appl i cations. For isobaric flow with c~ << 1, subscript 2 denotes the effective upwind asymp-
s ince B 

~ ~ Fu~~
1
’ from Eq. 21 

totic value of ‘
~Fu at some l ater time. Since

m ’(t) is a dimensionless flame speed relative to
the gas , for fixed cold-premixture density ,

V p O pu s ” (82c )
( y ) F 1 

8
;(~~41) 

ex p (-f 1 ) —, (81) /
~Fu2\ [

~ 
( -~r 

~j—) 
•xP

_ _ _ _  - - 
~
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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• where mj a 1. The largest (or smallest) value temperature at the flame , where the fuel mass
- 

~
- that the rat io 

~ FU2’~FU1~ 
achieves is (1 + A) ,  fraction vanishes : Y Fu2 (t) 11(t). For t ‘

a value Independent of both L and Le; this ~
‘Fu2 ~ 

ito 1; for t =
~~ ~~~ -. t{(t -‘ =.) (1 +A).

l imiting value occurs for t — ‘=: With FFU2 iT(t), a quas i steady” m~ may be

computed from Eq. 82c to compare wi th the instan-
- -) . ( I  • A)~~ ‘*P(.fl~~~A))  

- (83) taneous m~ calcula ted from the two simultaneous
integral equations. For the parameter ranges

- - Some appreciation for the relative roles of para- 8 0(10) , v1 a 0(1), A a 0(10
_ i
), the flame

meters is obtained from the following calcula - speed rn is underestimated by no more than 6%
tions (unless otherwise specified , ~ 10, by the ‘quasisteady ” approach,

1, A • 0.2 so m~(t i” ) - ‘ 2.76): for A a _O .2, For Le • 0(1), the equivalency FFU2(t)~
H(t)

m~(t ..) 0.23; for ~ a 15, m~(t c..) -‘ 4.19; may be defined again for purposes of comparing
for “F 

- 2, m~(t 
~=) 3.31. a “quasisteady ’ flame speed with the instanta-

For Le a 1, an integral exists for steady 
neous m~ calcula ted from solution of a flame

lam inar isobaric adiabatic flame propagation in propagating through a prernixture of nonuniform
the form (V + T) a const., where T • 0 at the sto ich iometry. The cited integral , (Y + T) a
cold boundary and V a 0 at the hot boundary. const., no longer holds , so that the concept
Heuristically , this relation can be emp loyed to that , In steady laminar adi abati c i sobar i c flame
define an instantaneously equivalent steady propagat ion, the hot-boundary temperature

— problem for a flame propagating through a fuel - achieved from a given oold-boundary prernixture
mass-fraction gradient. Specifically, fuel mass is independent of Lewis-Se,nenov number, Is
frac ti on upw ind, where the normal ized temperature employed. However, as Le departs from unity ,

- 

~ is zero, i s assoc iated w i th the instantaneous the accuracy degenerates,

1,25

5.0

5•15, •I  I .2 _ 
__________

• 0 4.0
v .2 

_____Li a 0.8
1.1~

. 
- Li • 1.03.0 

if L. 1.2

2,0 — 1.1 —

1.0
1.05 -

- - 3 0 I I
0 5.0 10,0 15.0 20.0

t 1.( I I I
0 5.0 10.0 15.0 20.0

Fig. 2b - From Volterra-lntegral-equatlOfl for- t
mula tion of thin-flame propagation through a
stratification In stoichiometric ratio of the Fig. 3a - From Volterra-integral-equatlon for-
unburned premixture. th. dimensionl ess time mulatlon of thin-flame propagation through a
rate of chang. of the flame position in von stratification in stoichiometric ratio of the
I’llses coordinates dm/dt as a function of time t~ un burned ~rem1xture , the dimensionless flamefor values of the dimensionl ess activation tern- temperature IT as a function of time t, for
perature B and stolchiometrlc coefficient for several values of the Lewis-Semenov number Ic.
fuel VF. Here Le a 1 , A a 0.2, 1 a 10. It may Here , A • 0.2 , ~ a 

~~ v~ ~~ , ~ 
a 10. It may

be noted tha t ñ(0) a be noted that 11(0) • 1

~
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3.0 1.3

A — 0 . 2 ,L.1 A~~0.2 ,L —1Q
1.2 -

2 5  Le•0.8 

1.1
Le - 1.0
Le- 1.2

2.0 —

1.0 

~~~~~~~~~~~~~~~~~~~~ .2,L= 1O1.5 - 

0.9

_________________________ _________________________1.00 5.0 10.0 15.0 20.0 0.8
0 5.0 10.0 15.0 20.0

t t

Fig. 3b - From Vol terra-integral-equation formu- Fig. 4a - From Volterra-integral-equation formula-
lation of thin-flame propagation through a strat- tion of thin-flame propagation through a stratifi-
Ification in stoichiometric ratio of the unburned cation in stoichiometric ratio of the unburned
premixture, the dimensionless time rate of change ~remixture , the dimensionless flame ten~erature
of the flame position in von fu ses coordinates H as a funct ion of time t , for values of the meg-
dm/dt as a function of time t, for several values nitude of change in unburned fuel mass fraction A
of the Lewis-Semenov number Le. Here, A = 0.2, and the dimensionless initial distance of this
I = 10, VF = 1, 8 = 10. It may be noted that change from the flame I. Here, Le = 1, “F 1~m ( t ) = - ’I’, m(0) = 0, and dm(0)/dt = 1 8 = 10, 11(0) 1. It may be noted that the case

A = -0.2 , 1 = 10 has been terminated at a time
beyond which there is little of interest

PROBLEMS IN FLAME/WALL INTERACTION * o , ~* o  as • o ~tor t o> ,

ISOBARIC COLD-WALL QUENCHING - The isobaric while at the hot reservoi r,
treatment of que chi ng of combustion near a col d
wall is more pertinent to automotive applications
than first appears, in that there is no signi- * S . - (Vor t 0) (87)f icant pressure rise ow ing to compress ion over
the time interval for flame/wa ll interac tion,
for not-too-lean premixtures . There may be At the flame, q ‘v( t), given initiafly by
significant pressure transients owing to im- ‘y(O)
pressed piston motion. However , for lower rates 

>> 1 (given const .) , conditions ~1

of engine revolution, the present case should be 40 and 41, with p • 1, hold; the quantity F ( t ’~.
adequate. Introduced in Eq. 62 , is to be used again be)c~ .

For the domain of interest 0 < < ~~~, t > o , The initial conditions are given by Eqs . 43 and
the initial/boundary value problemTheC~ ieS 44~ wIth 1, d0 ~ 1, b~ ~ 1. A fuel-lean
Eq. 22, wi th p • 1, together with thin vigorous flame, Initially far from the cold

Impervious noncatalytic wall , propagates t~~ardsthe wall and interacts with It.(84) DerIvation of Volterra :ntegral Equations
~~ Integral Transfono - F’W ~T the Integral-

for ~~~~~~~ 
equation reductIon to a problem In time only is

(85) executed. The semi-Infinite domain in 4, is
extended to the full-Infinite domain via odd
synlnetry for the temperature, and even sy etry

At the col d noncatalytic wall , the boundary con- for the fuel mass fract ion, about 
~
, 0; the

ditions are boundary conditions at the thin flame * • 1(t)

________

,1
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are incorporated in the partial differential 
____________________________________equations by use of the Dirac-del ta function , as 3.0

was done earlier. Hence,

~~~
. 4., Fo[~ - , )-  FiCO .,], (88 ) A aO. 2 , L~ 1
L,4.~~~[~~.*)

.rf[~~~ s). (89) 2.5 
~~~~~~~~~~~, La 1 (

Application of the Fourier integral transform
over p is now straightforward. However, the
initial conditions must be modified slightly to
preserve the even symetry of V(ip,t), and the odd 2.0
synhlietry of T(1p,t). Here, it Is taken that , as
t-, O,

I

(90) dm 1.5
~

0 f o r k I ’ 5 0

cosh (a ~~ - cosIs(~ •)
for ~~ ‘

~ 1 for 

1.0

:~ (91)
for k~ ‘~~

. A~~—2 , La 10
where ~~ are constants to be assigned, si~ch 0.5

j that these forms simulate initial conditions ~t
the flame front (4, -, ‘v s ) as closely as possible.
Satisfaction of the boundary conditions for

0 I I

~ 
for an adiabatic flame gives 

0 5.0 10.0 15.0 20.0
• s. th~ ( .  *~ ) (92) t

Fi g. 4b - From Volterra-integra l equation formula-
tion of thin-flame propagation through a stratifi-1 —~ ~oi’(f ‘o~ 

‘ i
i
, - (93) cation in stoichiornetric ratio of the unburned

For - -‘ 1. premixture , the dimens ionless time rate of change
of the flame position in von fu ses coordinates

(94) .dm/dt as a function of time t, for values A and
‘ a  • i, ’ L. Here, Le = 1, VF = 1, 8 = 10, m(0) = 0,

dm(O)/dt = I. It may be noted that the case
Also , T0(,-) and Y0(,j,) are virtually identical to A —0.2, L = 10 has been terminated at a time

beyond which there is little of interest
th€ Initial profiles first discussed .

Ac before, the Four ier transform of Eq. 88
r~ y ields formally 

Y (~ . t)  S [.rf~~~ t~~) 
-

: ~~ • - r (95)
• ‘ -~ • ‘~~s . ” •  •‘~~~~~ t - 

~~~CO%h( G* 0
J [.rt(!9~~

. ct 1
~
’
2) - •rf (__i~~ •

1 e°
2
~~°~ (4

~

,
0 1I?\/ • ) ~. p f, 2 ( t t ) )~ ~‘*p(-s~~(t )] • •xp[~~~(t ))~ dt ’ . . 

~ ~~~~~~~~~~ [.rt —
~

-
~~~ 

- ot ) - •rf (—_ ~0 =t 1i2)])

(96)
1 ~ ~~~~~~~~~~~~~~ ~ij~HjBut , from Eq. 90, wi th A-cosh( &~0)/ (cosh(a~0)-1], (t t.

~
I]
~ ~~~~ 

•

(98)
~~~~~~~ ‘~~ 

slag,fl ,—m ) ,0j s$,~i((t.o) V
• - - co,!~s 

~o 
- 

~~~~~ co$h(c, 
~~

j  ~~ ‘ (97)
The terms which multiply A describe the time
evolution of the initial conditions , while the

Insertion of Eq. 97 In Eq. 96 and Inverting gives integral term describes chemical consumption.
Sim ilarly,

~~~~L. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The conditions at the fl ame, a ‘ 1, are:

~ 
( 

e • V  \ ( ~~T(*.t) ‘ ~ 
1

,rf

2(1. ti~
12/ 5,2(1.

_______ ______ (______1 ,1.8
2t~~8i r 

( 

~~~~‘• ‘c 
~~~~~ 

2(1.. t)1’2 + 8(1. t) 1
~2) - .rf~ 

0 4 8(1. t)1 *’2)] 
h • L H • R. s • 0. (104)

2(1. t)

1 ,~. 8
2
t’84 ( ~ 

(1. tI ll?) 
( 
* .i~- i i1~h(8 ‘~~~ 

[.rf~ t ) ?/
-2 - 8 - •rf 112 - 8(1. 1 ) ]  

[~~~ 

+ Le - I.e * 0, wit h ~~F isp ~~
_ ~ • as o • 12(1. t)

• 2 
__________t 1~’~ ~~

- 

~~~~ ~ 
- ~~~ 1. t ) 0).1 

117JF(t )

1 
- ~~

. )1l2 
J 

dt .  ) (for t 

~ (105)2(’L.)

Enforcement of Eq. 39 gives two simultaneous The initial conditions are , for 11(0) :11
~

= 1,
nonl inear Vol terra integral equa tions for the
two unknowns ‘v(t), 11(t) from Eqs. 98, 99; once
solution is obtained, spatial profi l es may be
found from the same two equations . Of course ,
by calcula tion of normalized res iduals for h * h0 • 1 as t • 0 (for 1 <~~~ -); (106)

and Y[’v(t),t], Eqs. 98 and 99
a so may be used to characterize the accuracy of
solution for 11(t) and ‘v(t) obtained by an alter— H * H0 • exp (-r 0(1-o ) / Le} . V • 1o~ 

(1 - .xp(-~0(1.o)} ] •i t • 0
native, approximate method, such as the integral 

(for 0 c’ ~ 1).method now discussed .
Derivation of Initial-Value Problem by (107)Integral Technique - The problem is given by

partial differential equations (Eqs. 34-85); For >> 1, as noted previously, these condi-boundary conditions (eqs. 86-67); suppl ementary tions are compatible with the boundary conditionsrelations (Eq. 22) and flane conditions (Eqs. to within (exponentially) small error.40-41), all with p l ;  and 1,~itial cqnditions The follow ing representations of the depen-(Eqs. 43-44, w i th H0 1, d0 = 1, b0 = 1). dent variabl es are taken to be good approximationsFi rst , the (so-called) Landau coordinate for all time:
transformation t30) is Introduced to fix the
flame position:

(i ~(t)) isp ~- 1(t)(a.1) for 1 a - ;  (108)h (c,t ) .1- - L. c (t) ~
(*.t) * ( o.t ) ,  with a • */~ (t) . ( 100)

The in itial/boundary-value probl em for Y(o,t),
h(a,t), H(a,t) is restated (here primes denote sin

H(a .t)ordinary derivatives with respect to time, (109)
denoted by t):

cosh
• S —

~h 1’ ~ I.e • 0 for 1 a — ; (101) CoSh~~~~j 
for o a ~ 1. (110)

Ys 0 . -~j- , a~~~~~~
- —

~~~

aH Le~~ H~as i a2Y o . - - -
~

0 for 0<  a ’  i.(102) For b(O) b0 ~ 1, d (O) d~ ~ 1, these adopted
forms are closely compat ib le with the initi al
conditions. The two flame conditions at a = 1
involving gradients , and the three partial
di fferential equat ions, yield five relationsThe boundary condi tions, for a cold isothermal for the five unknown functions of time b(t),noncatalytic wall, and for the far field , are c(t), d(t), 11(t), ~‘(t). Initial values are:

H • 0, Ca s a • 0 (for t 2 0); h 1 as a.  — (for t 2 0). (103) R(o) 
~o 

1, s(0) ‘‘o ‘~ 1 , gIven const.; c(0) C c0 I ( for~~I 1y). (111)

_ _ _ _ _ _  - -- -
—-- -—- -~
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The values of b(0) b0, d(0) d0 are to be ‘ 1 - t~~~.41 , (
~ ) - . (~

) tIn5~~ ~~~ (119)

In the manner now described .
The fl ame conditions (Eq. 105) give

• . ~~~~~~~~~~~ ~i 
- u • i- ~~ - (~ i- L r  t~ , I~H~ - f I r  t-

(* 11.. bT ,l,h[ ~/1, 5) 
~~~~~~~ 

H 
~~ 

• 
~~~~~~~~ .~~

- , k
J b tanh ~./1eb) 

‘ c • (1 1~ ) (120)

(-
~

) ‘ (l.1l)(s it c) (121)
H~ •~p I . .~

8 ( 113)

Hence , from Eqs. 116 and ~17
At t - 0, for -

~~~ 1. these give b0 ~ d0 ~ 1
by Inspection. Differentiation with respect to ~~““ ~~~~~~~~~~~~~ 

- tanh (~/d)]d 4 [ tan t ~~~s / d ) ] ~ • - • (122)
time gives for Eqs . 112 and 113 , respectively,

(~~Le b~ • (1~~ 
c 

[1 - 
~~~~~~ ~)] 

- -t-~~~ -r[~~~]~ 4 [ ~~~~~~4 ‘~~~~~~~ (123)
tan */ ~~~~~~~~ b~

+ ~.,h(5/d) • (;,dL id I ~ • H(.~ Le ~~~ ~cos (~ -d ~J~~ (d (ash (~~d )  b sinh (~ /1. b)J and from Eq. 118
‘ 

~~~~~~~~~~~~ ~~ 
.0; (114)

4 t~j 15 • - c ‘ - (124 )

Ii id I (
~/dS 1 This last equation states that , if 11 • 1, IT • 1

- [ i1~5)’~/d) ~0iJi~ 7~ J1J ‘~~ ~ r~T~ ii~r~rd~j ~
t 0

r -~~~ at all subsequent time; this artifact of’ the
- [(‘f 

. I) • 0. (115) approximate procedure Is circumvented by starting
with a value of 11 slightly displaced from unity .
The fact that the calculational procedure tends
to establish a steady propagatinQ flame while

In genera l , the partial differential equa- still away from the wall (~‘ i)~ provided 11tion s may be integrated wi th respect to , upon
imposition of the boundary conditions and of the is not too far from unity , is established in the

flame conditions , to yield section on the effects of transients on flame
propagation .

d - )  • ~~V \ Equations 114-115, 122-124, subject to the
initial conditions implicit in Eqs . 111-113 ,

,.~~ ~ - - (116) constitute the sought-after initial -value problem
witers & -  ., d ’ , fcn(t). n-;, ‘ ~~, (1.t). r~~

n(t ) . for b (t) , c(t) , d(t) , 11(5), ‘v(t). Substitution
of the results in Eqs. 108-110, 22 gIves the
solution for Y(tp,t), T(~ ,t), ‘r(t); resul ts dependon the parameters K, B, Vr, and Le. (V , c , IT

• d(~~) i~e [~~h\ £ H~~ ~ r 0 0 0
• 

~ 
- 

~- - •i~i it • must also be selected, but there i s minor sen-
sit ivity to these quantities Introduced by the

wi,.,, 

~~ ~~~ . fCC(%), :~ t ’
,t). fn~ ;t~~. - -

~~ ~~~ ,~~~~~ 
method of solution,) (See Figs. 5—8.)

(117)
Other output quantities of interest are the

ojyrl rate of fuel consumption at the flame (i,e., the
(l.R) £ . derivative of the fuel mass fraction at the

flame), the fuel mass fract ion at the wall , and
wI,eri .f(1.h)do. f~ic(t). (”) • -

~~ 
(I ’I ~~~~~~~~~ (118) the temperature gradient at the wall; these

quantities are, respectively (if X f (t)  is the

For the specific forms adopted, 
~~t~)

1 the Cartesian coordinate of the flame

L. -_ ~~~~~
. .~~~~~~~~ -
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______________________________________(
~

) . .(
~ /~ ) t.nh(,/d) __a.

(~~) • .(ii~) tanh(*/d) 
1.0

( as) - 
(l/d) (anh(s/d)

V 
• 

(1 + K m  
‘ (125)

0.8

• cosH(ifd ) - I
coshif dJ ‘ (126) 

0.6

• 
(

aPI
) • ~ ( i/L i b) _....~(aH) • _________

( aPI) — (1/Li b)
~~~ W sinh(s/Le bl 

~~
- i~~~~ I.~~b) o.~ ~~~~~~~~~~~~~~~~~~~~~~

~~~~ w 
• H s1nh~p/Le b) (127) 10~ “F

18 — 20, VF 1

coordi nates i s
The association of Cartesian and von Mises 0.: ~~ — 

~~~~ ~

~ ( 4 K ~r~osh(ia/L~~~~ .~
4) 

for 0 ~ a S _________________________________________________________(P , b) si,h

(128) 0 0.2 0.4 0.6 0.8 1.0
~ 

(

~~+~~~~~~~~~ - 
s(l.~) [l

_ exP(.5(a_ IJJLec)]) for 1 a — , 0(Site c)

where Xf(t) is given by Fig. 5a - From integra l -method results for a cold
wall (at temperature T 0), profiles for the

• ~J’~ 
4 K H)da (

~ 
k~~[cosh( * /Le b} - 11). (129) mass fraction V as a function of the coordinate. b) tinh(SrLe b) o[= ~/V (t ) ]  at time t = 8.04 , for several values

of the dimensionless Arrhenius activation tem—Adoption of a thin-flame nio”el furnishes a perature B. Here, K = 6, Le = 1, v~ = 1, and thenatural and an explicit definition of quench- initial time is defined by V (t 0) = ‘V0 10.layer thickness. The rate of change of the This is the first of five figures which describeflame position with time in the Cartesian the augmented quenching for flame interactioncoordinate is with a col d wall with increase of the ac tiva tion
temperature Bdx,,

i ~~ — ‘ x~ • (1st ~~~ 
K IItcosi~(i(te b) -1) (13c )b SInhtP/ e b)

1.0
The gas speed at the flame is 

0.8
~~(, .t) • KJ_

~
d,. K Le { ~ l4) (aN 1~ ) ~ ~~~~~~0 w

T
0 6

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(131)b sinh 1

B a 
~~ “F 

a 1

Thus , t~ie speed of the flame relative to thespeed of the gas at the flame, (Uf -u f) is 
0.: 

- B a 2 , “ F 1

(1+KR)’p ’. In~tia11y, for,~ >> 1, H ~ 1, and 0 0.5 1.0 1.5 2.0 2.5 3.0
‘I” a — 1, so U~ — -1 and Uf K. Finally, a

aquantity defined to be the net rema ining fuel ,
N(t) , is introduced

Fig. 5b - From integra l -method results for a cold
wall (at temperature I = 0). profiles for the
temperature I as a function of the coordi nate

N C f  pY ds a( 4/’I’(t)]at time t • 8.04, for several values
0 of the dimensionless ArrPienius activation tem-

perature B. Here, K - 6 , Ic = 1, “F = 1, and the
d tinh(v/d) . (132) initial time is defined by ‘V(t 0) = 10

_ _ _ _ _  

-á
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10,0
where the subtracted tern in Eq. 132 is Identi-
fied to be the depletion of fuel ahead of the
flame owing to the presence of the flame.

ISOBARIC ACCELERATION TOWARD AN ADIA BATIC 8.0WALL - Derivation of Volterra Inte~g~ral Eq~iations
by Inte~ 1~Tii~sform The entire dàr[vation
~~~~~~~~~~~~~~ bbTds without modification .
However , because Eq. 86 is altered to 6 0

N
- o, ~~ 0 • 0 (for t 0). (133)

4.0

Eq. 81 is revised to

2.0 8a 4 0 ,VF
m l

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (134) a a  10, v
~
.l and v

F
a ?

to enforce the evenness of T( i~, t) about ~‘ 
a 0 ___________________________________

for the adiabatic case. A lso , Eq. 92 is revised . 0 2.0 4.0 6.0 8.0 10.0
so that, as t -

~ 0 t

- 
~~~~ 

~ cosi~~~~T- T  ~~ ‘0
, (135)

Il for . - Fi g. 5d - From integral-method results for a
col d wal l (at temperature I - 0). profiles for
the net remaining fuel N (defined by Eq. 132)
as a function of time t, for severa l values of
the dimensionless activation temperature t’.
Here, K 6, Ic - 1, vF 1, and the initial

_________________________ time is deflned by v (t a O )a V O a l O
10.0

1.0
8.0

B — 40, “F a 1
a a 20, “F 

a _______________

0.95
6 .0  • 8 1 0 ’ ”F 2

V 5 a l O , VF
_ l

g 8 2 , “F 1
4.0 

~~~
40’ ” F 1 0.9

B a 20, “F 1

2.0 
B a l O , ’bF

a 2

1 0.85
a 2, “F — 1

I I

0 2 .0 4.0 6.0 8.0 10.0
0.8 I I I It 0 2.0 4 .0 6.0 8.0 10.0

t
Fig. 5c - From integral-method results for a coldwa ll (at temperature I • 0), profIles for the Fig. 5e - From integral-method results for a cold
pos it ion of the flame in von Mises (mass-weighted) wall (at temperature T 0), profiles for the
coordinates ‘P as a function of time t, for flame temperature Ii as a function of time t, for
several values of the dimensionless Arrhenius several values of the dimensionless Arrhenlus
activation temperature a. Here, K - 6, Ic — activation temperature B. Here, K 6, Ic 1 ,1, and the Initial time is defined by• 1, and the initial time Is defined by
V(t a o )— ’ P0 a lO  IP(t O ) .r

0 a l O

_______________  ~~~~~~~~~~ ~~~~~~~~~~~~~ - 
-

~~~



18 
. ,

10.0 10.0

8.0 - 8.0

6.0 6.0 —

V - N

4.0 4.0 —

L e a l . 3
— Le — 1.0 is2.0 — & ‘~~ ‘~~~~~ I c —  1.3Le a O.7 I c —  1.0

Ic a 0.7
0 I I I  1 I a0 2.0 4.0 6.0 8.0 10.0 0 2.0 4.0 6.0 8.0 10.0t t

Fig. 6a - From integral-method results for a Fig. 6b - From integral-method results for a
cold wall (at temperature I = 0), profi les for cold wall (at temperature I = 0), profiles of
the position of the flame in von flises (mass- the net remaining fuel N (defined by Eq. 132)
weighted) coordinates ‘P as a function of time t, as a function of time t, for several va l ues of
for several values of the Lewis-Semenov number the Lewis-Semenov number Le. Here, B 10,
Ic. Here , B = 10, K = 6, “F = 1, and the initial K = 6, “F = 1, and the initial time is defined
time is defined by ‘P(t = 0) = ‘V0 = 10. This is by ‘P(t = 0) = ‘V0 10
the first of three figures which describe the
augmented quenchi ng for flame interaction with a
cold wall with increase of the Lewis-Semenoy
number Ic

1.05

Eq. 93 is revised , so that

dl t t n l t ( R p
Li — 1 is — 

~ con • (136) 1.0

For ‘V0 
‘
~~

- 1, B (1/ Ic), as before . Fourier 
Le — 0 7transformati on over ij, integration over time3

and inversion of the transform gi ves U 0.95 - Ic — 1.0

L e — 1.3

1). .t) 2[cosh(ct5~).tJ ~ (_~
5o 

~~72r) •rfc (__ ~2_
_
~~)] 0.90

0.87 • I • I I I •
5.0 6.0 7.0 8.0 9.0 10.0 

•t
,L . C 2t~~~ik* F ~~~~‘ 1/2’ ~~~- ‘  ,_ ,1
4[cosh(fi0)TJ  [‘

~ 
(.~ t)~~ 

i(~. t) ) - ert (~~ —~-~Tr~ + f(te t)h/
)j Fig. 6c — From integral —method results for a

2 cold wall (at temperature T - 0), profiles of the
- 

I 
•
Li C t P* [ j~ *o • 

~ CL. t)1/2\ ,,( - 1/2\1 thin—flame temperature II as a function of time t ,l[cosh(f~0JTJ i ~~~~~~~~ 
1’ ,. 

er 
~2( 1T77’ CCL. U jj for several values of the Iewis—Senienov number Ic. 

1w~ ~~~ 
Here , B — 10, K = 6, “F • 1, and the initial time

* 
2) L,)1f!o) 

“~~ L.tt-~~1~ ~ ~~~~~~~~ ~ d~ . (1~7) is defined by ‘V (t 0) ‘
~
‘
~~ 

10

— — ~~~~~~~~~~~

L ~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _  - — -~~~- - —  ~~~~~~~~~——--—~~~~~~~
•
~~~~~~~~~~~~~ 

-
~~~~~~~——~~~~~~~~
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Enforcing T[’P(t),t~ — ~T(t) yields an integral 1.0 — - - - — 
~~~~~~~

- •-- - —

equation to complement the one found by enfor- 
~~~~~~ 

•2’-*-- ”  
-

g 
D~r~v~~1~nof In1ti~1-Va1ue Problem by 0.8 /

In tegral Technique - The entire discussion from ‘,“ ~~ A,~ 
‘s
~~ 

/

Eqs. 100—llff holds unaltered , except for the 0.6 ,‘, ,
~ 
\,,

~temperature boundary condition at the wall; i.e., ‘‘ /, ,‘ ,‘ /

:~~~~°~ 
133, so Eq 109 1: ~

0 4.0 8.0 12.0 16.0
Thus , Eq. 112 becomes x

- • t !~!1te b~ - • o , (139 )
C 

Fig. 7 — From integral-method results for a cold
so Eq. 114 becomes wall (at temperature T = 0), profiles for the

(normalized , stoichiometrica lly adjusted) mass
fraction V and for the dimensionl ess temperature

-, - - I as a function of the dimensionless Cartesian•
~~ 

H tanN(./ L, h~ • ( ‘- - I e  t~ se~ Ps (‘!Le h’ I • ( I- In  -coord i nate x , for several values of dimensionless
time t. Here, B = 10, K = 6 , Le = 1, V F = 1.1ta~*~ 

. (s/d) ~~~~~~~~ ~ .{(~/d) 
~~~~~~~~ - p~ LL) iJ~ 

se -:~~-~ .. ~~~~~~~ The initial time corresponds to von Mises (mass—
i’ weighted) spatial coordi nate ‘Y(t=o) = ‘P0 = 10.

t~~ (140) Whereas ‘P ’ ( O )  = -1, the initial fl ame temperatureh ~~ 
* ‘0 H(0) = 1, and the initia l net remaining fuel

14(0) = 9, the calculation is terminated at
t = 8.99 wi th ‘P ’ ( O )  = 0.123 , iT = 0.896 , and

Also , Eq. 123 must be replaced by N = 0.434 . The flame speed U~ increases from aninitial value 2f -1.00 at t = 0  to a maximum va lue
1 of -1.37 at t = 7 .42 , then decreases rapidly

j (.~ ie t~ I I ti#N ~ Li b~ I ,~ 
b I~j .

si~~~-~Le~~ co~~ -Ie1T
J

5 
[ e 

— 

j
~ [~~~J 

L e t -  Lwtth Uf (t 8.99) = —0.3 72
(141)

After Eqs. 139 and 113 are used to assign b0, d0
for specified values of Le, 

~ 
vp ., H0, and ‘Vo, 

8.0 
K = 7

then straightforward integration in time follows
by use of Eqs . 115, 140, 122, 141, and 124. 6 0 

K - 6
Output quantities of interest for the adia-

batic wall are the rate of fuel consumption at K 5
the flame and the fuel mass fraction at the wall; Ufthese are given by Eqs. 125 and 126, respectively. 4 0 —

The temperature at the wall is also of interest:

If,, ’ ~ sec~ (S/Le U. (142) 2.0 -

S i nce ~ goes from ‘P0 ( 1) to 0, H
~

( t) goes from -

effectively zero to the temperature at the flame • i I • I • ,J______
as the flame front accelerates towards the wall. - ______

The assoc iat ion of Cartes ian and von Mises 0 2.0 4.0 6.0 8.0 10.0
• coordinates is

___________ 

Fig. 8 - From integral-method results for a coldK I( tV~fLt,~
b) 

~ for 0 ~ ci ~ 1Ti/Li b con V lb)
/ wall (at temperature I = 0), the speed of the

KIl 31)L1- C-, ‘-1)/k. c))\ flame in a laboratory frame of reference U as a

~ ‘k~~” - - (is/f. ~ )for 1 func tion of time, for several values of th~ exo-
(143) thermicity parameter K. Here, B = 10, Ic = 1,

vF - 1, and the initial time is defined by
where Xf(t) is given by ‘p (t = 0). ‘p~ 10

L 
- ~~~
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~~~~ 
, K A t.nh( Li (144) equation to complement the five obtained from

(nIL.~~ ) Eqs . 35-37, 40-41. Details and results are
reserved for another publication.dX~ 

________________U t at- • (1 • A t.rsh(vik. U’) 
• (145) Ihe conjecture here is that significant

flame/wall interaction occurs over a few diffu-
_______ - (146) sion scales only; thus, as long as the bulk-gas

‘1 flame speed is appreciable (i.e., the premixture
is not so fuel-lean that the laminar propagation

N • U - ta~~~~ d) 
3~~ (147) speed Is highly retarded), the quenching of the

flame near a col d wal l, or the acceleration of
the flame near an adiabatic wall , is isobaric.
The compression-enhanced pressure l evel attained

Results are given in Figs. 9-11. by the burning of the entire cohfined mass of
gas is the pressure level to use in the near-

NONISOBARIC ASPECTS OF FLAME/WALL INTERACTION wall analyses. The final pressure atta ined i n
a homogeneous fuel-lean premixture, uniformly

For a conta ined premi xture , the isobaric at pressure p~ at the initiation of burning
approximation requires reconsideration , and the in a container of length 1*, may be shown byinitial/bounda ry-value problem, as presented in thermodynamic arguments to be p~ = p~ + (y- 1).Eqs. 22, 34-47, is to be examined. The integral-
equation approach, developed above for isobaric ‘V Fu ~ Q~ L*, in the absence of losses (whichinteraction of a flame with both a cold iso-
thermal wall and also an adiabatic wall , has may be substantial). The anticipation is
been generalized to the nonisobaric case for that results obtained from an inteqral-
both types of wall boundary conditions. The equation method for a confined premixture will

confirm the conjecture that flame/wall inter-generalization does require simultaneous solu- action is virtually isobaric , as far as compres-tion of six quasilinear coupled ordinary dif- sion from confinement is concerned.fcrcntial equations , since the spatially
Invar iant pressure , p(t), joins the five unknown However , there may be significant pressure
functions treated for the isobaric case. Inte- change over the time interval of flame/wall
gration of the middle equation of Eq. 22 over
the flow domain , enforcement of the imperv ious
condition on the velocity at the containing 1.2
walls , and substitution of the adopted spatial
variation of the temperature yield the sixth 1.0

1.0
0.8

0.8 -

1 0.6
0.6 

tao

0.4Y
O . 4 - Ic — 1.1

0.: 

~~~~~~~~~~
\12

\ 0 
0 0:5 ~ 1 5  2~0 2:5 3.0

Ic - 1.00.2 Ic - 0.9
Ic - 0.7

0 4.0 8.0 12.0 16.0 a
x

Fig .lOa -From integral-method resul ts for an
adiabatic wall , profi les of the dimensionless

Fig. 9 - From integral-method results for an temperature I as a function of o( p/i’, where Ip
adiabatic wall , profiles of the (normalized , Is the von ~1ises spatial coordinate and ‘v is thestoichiornetrically adjusted) fuel mass fraction flar.ie position), at time t 7.52, where ‘p0 =V as a function of the dimensionless Cartesian ‘r(t = 0) = 10, for several values of the Lewis-
coordinate x, at several times t, where the Semenov number Ic. Here the dimensionless
initial position of the flame in von ~1ises Arrhenius activation temperature B = 10, the
coordinates ‘P0= 10. For this nominal case, stoichiometric coefficient for fuel vF = 1, theIc 1 , K-5. Since the nondimensiona l tern- exothermicity factor K = 6. Augmenting the
perature I = 1 - Y , the wall temperature T(0,t) thermal diffusivity preheats the unburned fuel
rises rapidly to the adiabatic flame temperature more effectively

* 1 -- 
_ _ _ _  _ _ _ _ _ _ _  

_ _ _ _ _ _
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io~o 2 . 5  — _____

8.0 -

= 
_

Ie :O.7.......~,,,,,,, ~r~
%%

~ Y( P ,t) 1/
2.0 - : 1.G 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~a 1’”— -----.~z:~~~~’\\ Ic - 1.
0 Ic 0.9—

0 2.0 4.0 6.0 8.0 10.0 Ic - 0.7
t 0.5 _

Fig. lOb—F rom integral-method results for an
adiabatic wall , the flarie position in von Ilises I • I I Icoordinates ‘V as a function of time t, for 0
several values of the Lewis-Semenov nunber Ic. 0 2.0 4.0 6.0 8.0 10.0
Here, B = 10, yr = 1, K = 6. The larger the t
Lewi s number, the more rapid the final accelera-
tion (from an initia lly constant-speed propaga-
tion) of the thin flame into the wall , owing to
interaction wi th the wall; because of large Fig. lOc - From integral-method results for an
terminal gradients , the calculation is not adiabatic wall , profiles of the dimensionless
completed except for Ic 1, thow’h ‘P -‘ 0 at fuel consumption at the thin flame, -~Y(p ,t)/~tfinite time in the mod& as a function of tine t, for several va l ues of

the Iewis-Senenov number Ic. Here B = 10, v~ = 1 ,
K = 6, ‘P0 = 10. The consumption rate at a fixed
tine increases monotonically w ith Lew is number

interaction from piston motion during operatiQn after flame-wall interaction begi ns
at higher rates of revolution (14]. Prescribed
movement of a wall in time presumably suffices
to simulate piston motion in the one-dimensional
unsteady reacting flows under study. It is worth for flame-temperature augmentation (as opposed
emphasizing that it is piston motion (and, hence, to flame-temperature depression). For too large
wall motion) that is prescribed as a function of a flame-temperature depression , steady flame
time ; the wall motion must be translated into a propagation is not recovered at all , at leas t not
variation of pressure with time. for that time span of practical interest for many

purposes . These resul ts are obta ined here by
DISCUSSION AND SUMMARY approximate , integral-method treatment of a thin-

flame formulation.
The fo llowing properties of results , ob- Second, also for a spatiall y unbounded

‘ta m ed by use of a thin-flame model to describe domain , the transition between steady flame
isobaric unsteady one-dimensional l aminar flame propagation at one stoichiometric ratio through
propagation through a fuel-lean premixture under a continuous change to steady flame propagation
a direct one-step Irreversible exothermic chemi - at an augmented (or decremented) stoichiometric
cal reac tion, seem worth notinci . ratio , is examined by means of numerical solution

First , for a spatially unbounded domain , the of s imultaneous nonl inear Vol terra integral
effect of heat extraction from, or of heat addi- equations, obta ined by application of the Fourier
tion to, a flame, on the rate of recovery both of transform to the thin-flame formulation (Figs. 2
steady propagation and of flame temperature are through 4). The time required for transition
recalled to be as follows . The rate of recovery through a given fuel stratification decreases
is faster for larger Iewis-Semenov number, and with an increase in either the Lewis-Semenov
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Fig. lOd -From integra l -method results for an Fig. 11 - From integra l -method results for an
adiabatic wa l l ,j rofiles of the tempera ture at adiabatic wa ll , profi les of the (normalized ,
the thin flame H as a function of tine t, for stoichionetrically adjusted ) fuel mass fraction
several values of the Lewis-Semenov number Le. V as a function of the coordinate -

~~~
= 

~~~~ attime t = 7.52, where ‘P0 = ‘V (t=O) = 10, forHere, B 10, ‘F = 1 , K = 6, ‘V o = 10. The flame several values of the Lewis-Semenov number Le.temperature at a fixed time increases nonotoni There is a slight depression of the value of Vcally with Lewis number after flame-wall inter- for Le ~ 1; i.e., there is a nonnonotonic varia-action begins. Since 11(t) = 1 for Ic = 1. the tion (accord i ng to the approximate method )parameters vF ,B play no role in this case

number, or the reactior~ order with respect to However, we are unable to infer from his paper
fuel , or the dimensionless Arrhenius activation the results in any of our figures 5a-5e, 6a-6c ,
energy, or the sharpness of the fuel stratifica- 7, and 8, except that for the flame position
tion . Also , the time requires for transition is at Lewis-Semenov number Le = 1 in Fig. 6a. We
less for propagation through a fuel enrichment of have included the details of our treatment be-
a given magnitude , as opposed to propagation cause we believe the differences in methodology
through a fuel decrement of the same magnitude. to be of interest. The resul ts in our figures
Further , judicious use of a steady-flame-propa- are more readily compared wi th solutions fur-
gation relation yields the flame speed through nished by Kurkov and Mirsky [10] and by Adamczyk
the stratification , with error on the order of a and Lavoie [14], who use numerical integration
few percent; that is , a quasisteady approximation of the initial/boundary-value probl em with a
normall y should suffice to describe the flame conventional l aw-of-mass-action expression for
speed and flame temperature through the transi- the chemical-reaction term. The position of the
tion . Incidentally, wi th knowledge of the flame propagating flame ~ appears to reach a positionspeed and flame temperature as a function of of closest approach to the wall and then to
time, should the entire spatial profile for fuel retreat; the reversal occurs further from the
and/or temperature be required , it seems numeri- wall at larger values of the dimensionless
call y easier to return to the differential- Arrhenius activation energy B. Because the
equation formulation to obtain results , rather larger-activation-energy flame maintains a
than to seek such information from the integral- greater distance from the wal l, the flame
equation formulation , temperature IT decreases less rapidly in time .

Third , attention is turned to results from Raising the reaction order with respect to fuel
integral-method treatment of the retardation of v also l eads to closer approach of the flame to
flame propagation as a cold wall is approached t~e wal l and , hence , to a more rapid decrease in
(Figs. 5-8). The cold-wall problem (and other flame temperature. Increasing the Lewis-Semenov
problems) have already been treated by Buck- number Le likewise leads to more rapid decrease
master [31] by the thin-fl ame approximation , of the flame temperature owing to greater heat

-w

.1
-1

- -



- ______________________________________

23

transfer to the cold wall. Two other properties how wel l the integra l -method solution approximates
of the results are : (1) the rate of reactant the solution to the formulation with the law of
co n sump t i on at the th i n fla me, -~Y( ,t)/ ‘t , mass act ion i s a pprox imatel y the same as the
decreases monotonically in time as the cold wall error incurred for the thin-flame formulation;
is approached ; and (2) the speed of the flame in i .e., the error remains small because the reac-
la boratory coordinates Uf increases signif icantl y tion-rate term is small. However , for ~ = 0.8,with flame exuthern ilcity K in the bulk gas , but 0.9 at large times , the error can become quite
as the wall is approached and chemical activity large [i.e., 0(40 )]; this is especially true for
i s reduced , the d istinction in the flame speed a cold wall , since the quenched flame tends to
owing variation in K is much less prominent , be spatiall y diffuse. Neve rtheless , the error

incurred is quite localized .
Fourth , from i ntegral -method trea t~~ it of Worthwhile directions for related further

flame propagation toward an adiabatic wdll (Figs. theoretical and experimental work include i so-
9-11), there is a terminal acceleration of the baric , spat i a l l y two-dimensional flame/wa ’’

J flame toward the wall , increasingl y pronounced interaction , and nonisobar ic effects on f~. :e
as the Lewis-Semenov number Le achieves values propagation through prenhixtures confined by
in excess of unity ; the total amount of fuel is variable -volume containers. The flame-wi thout-
consumed in finite time . The preheating of structure model seems a tractable means of exam-
remaining fuel is greater for larger Lewis - ining such aerothern iachemical flows. The
Semenov number, and the flame temperature can app lication of transform techniques for the
exceed the adiabatic flame temperature for solution of such thin - flame models appears to be
Le > 1; for Le < ‘ , the flame temperature falls an approach deserving consideration.
below the ad i a bat i c f l a me tempera tu re as the
wall is approached . The wall temperature ACKNOWLEDGMENTS ’
approaches the thin-flame temperature as the
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